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Abstract—Machine learning models especially deep neural
network models have shown great potential in making decisions
when analyzing clustered or longitudinal data. However, lack of
model transparency is a major concern in risk sensitive domains
such as social science and medical diagnosis. Despite the early
success of explaining machine learning models, there is a lack
of explanation methods that can be applied to any predictors
on clustered data since most of the existing models assume that
all observations are independent of each other. In this paper, we
address this deficiency and propose to use a linear mixed model to
mimic the local behavior of any complex model on clustered data,
which can also improve the fidelity of the explanation method
to the complex models. We apply our method to explain several
models including a deep neural network model on two tasks
including movie recommendation and medical record diagnosis.
Experiment results show that our model outperforms the baseline
models on several metrics such as fidelity and exactness.

Index Terms—Explainable machine learning; Deep neural
network; Clustered data

I. INTRODUCTION

Predictive analysis on clustered or longitudinal data is
widely applied in social, behavioral, and health sciences,
where data often contain clustered structures and observations
within each cluster are correlated. For example, patients may
have multiple hospital admissions during a period of time,
and the test observations of different admissions (longitudinal
data) for a patient form a cluster. Observations nested within
each cluster, e.g., the ratings of movies from the same user
or the length of ICU stays for the same patient, are usually
correlated. Machine learning methods have been widely ap-
plied in analyzing these types of data and make decisions such
as personalized recommendation, malware classification, and
medical diagnosis. However, explaining the predictions by ad-
vanced learning models such as deep neural networks remains
a challenging task due to the complex model architectures.

Interpreting predictions on clustered data in risk sensitive
domains such as medical diagnosis is important because
explanations can increase human trust in the model or help
human adjust the model to make better decisions. Research
studies [1], [2] have observed that explanations may enhance
user trust in the system and increase the acceptance of the
decision. Also accurate and reliable explanations can be the
key to identifying failure models, discovering new knowledge,
and avoiding unfairness issues.

It has been convincingly argued that a good explanation
should be both interpretable and faithful to the original model.

An explanation should make a (human)understandable con-
nection between the input variables of the prediction model
(e.g., "sneeze") and the response (e.g., "flu detected"). It is
also essential to select only a few top explanatory features
for better human-comprehension. Another essential criterion
is fidelity; that is, the explanation should be faithful to the
way the system generates prediction results.

Despite the early success of explanation models for machine
learning, there is a lack of methods to explain the predictions
on clustered data in a model-agnostic, interpretable, and faith-
ful way. Some existing interpretation methods such as PLNN
[3] can only explain a specific group of machine learning
models. Some other model-agnostic explanation methods such
as LIME [4] and LEMNA [5] can explain any black-box
model, but are not able to provide explanation for clustered
data with high fidelity, due to the assumption of independence
of all observations. However, the independence assumption
usually fails on clustered data, and therefore affects model
fidelity.

In this paper, we develop a novel explanation method
with high fidelity to account for the correlations existing in
clustered or longitudinal data. Our method no longer assumes
all data samples are independent. Specifically, we make two
key contributions that differentiate our method from existing
ones. First, when sampling from the local neighborhood of
an instance, we consider the clustered nature in data and
generate correlated samples. Second, we adopt a linear mixed
model (LMM) to approximate the local decision boundary
of a complex model such as deep neural network, to infer
the important features. We argue that LMM, which integrates
both cluster-level regression coefficients (i.e., random effects)
and the regular regression coefficients for predictor variables
(i.e., fixed effects), is a high-fidelity explanation model to
accurately approximate the complex models’ predictions on
clustered data.

To our best knowledge, our model is the first one that can be
applied to explaining the predictions of any black-box model
for clustered data, with high fidelity and high exactness at
the same time. Experimental results on benchmark datasets
including the MovieLens and MIMIC-III datasets, demonstrate
that our proposed method significantly outperforms state-of-
the-art baselines in explaining the predictions on clustered
data.



II. RELATED WORK

Most of the existing explanation methods focus on generat-
ing explanations for specific prediction models. For example,
EluciDebug [6], a full human-in-the-loop system, explains an
already interpretable model, e.g., Naive Bayes in text mining.
PLNN [3] provides consistent and exact interpretation only
for the family of piecewise linear neural networks. Therefore,
the explanations are restricted to specific neural network
architectures and thus not model-agnostic.

Recent attempts have been made to learn simple inter-
pretable models that can approximate the predictions of
original models [7], [4] with applications in text or image
classification. These methods do not require any knowledge
about the classifier internals such as network architecture and
parameters. They treat the original model as a "black box"
and analyze the model behavior through the inputs and the
corresponding outputs. The most representative system in this
category is LIME [4] that can explain the predictions of
any classifier in a faithful way by approximating it locally
with an interpretable model such as a logistic regression or a
decision tree. A recent work OpenBox [3] outperforms LIME,
in the exactness and consistency of explanations for similar
instances. However, OpenBox is again restricted to the family
of piecewise linear neural networks, not a system that can
explain any machine learning models.

A very recent model-agnostic approach LEMNA [5] pro-
poses a high-fidelity explanation method dedicated for security
applications. The method extends LIME with an important
twist that it no longer assumes that features are independent.
Based on fused LASSO, features are grouped together and
the dependency between features is better captured. Our
framework can be regarded as a complementary approach to
LEMNA in that we assume observations (e.g., data samples)
are no longer independent.

III. PROBLEM DEFINITION

A. Applications on Clustered/Longitudinal Data
Recommender System: Recommender systems such as

Netflix, Pandora, Amazon aim to predict user interests and
recommend items such as movies, music, and products tailored
to each individual. The response variables (user ratings on
items) are clustered within users since each individual user
tends to have his/her own rating patterns.

Patient Health Record Analysis: Longitudinal data are
clinical records summarizing clinical experience of a patient
over a period of time, which can be used for evaluating and
optimizing the health care delivered. The health records (e.g.,
ICU stay time) are clustered within patients since different
patients may have different health conditions.

In general, we would like to explain any prediction model
including deep neural network models for both classification
and regression tasks on clustered/longitudinal data. In this
paper, we focus on deep neural network models for the
above two regression tasks and provide explanations for the
prediction models. We then will evaluate the explanations
based on metrics described in Section V-D.

B. Background of Model-Agnostic Explanation
Model-agnostic explanation methods treat a model (e.g.,

a deep neural network classifier) as a "black box" with no
knowledge about the model details such as the architecture and
parameters of the neural network. The goal is to understand
the "black box" by observing the inputs and the corresponding
prediction results. One of the most representative systems is
LIME [4]. The system aims to identify the important features
for a specific input instance to explain why the instance is
classified as one of the class labels. Data is sampled from
the neighborhood of the instance and a local linear model
is used to approximate the local decision boundary of the
target classifier in the feature space. Since a linear model is
self-explained, it can provide a certain number of important
features based on regression coefficient as the explanation to
the target model.

Formally, a prediction model to be explained is defined as
f : X → R, which maps an input data point represented
by a feature vector x ∈ Rp to the outcome variable such
as the probability of a class label. An explanation is defined
as a model g ∈ G, where G is a class of models that are
easy to interpret. The model complexity is represented as
Ω(g), such as the number of non-zero coefficients for linear
models or the depth for decision tree models. The input to
g is x′ ∈ Rp′ , which is an interpretable representation of
the original feature x, e.g., a binary vector indicating the
occurrence of each feature, or a sub-vector of x. In addition,
Πx(x, z) is used to measure the proximity between a pair of
data points x and z, which defines the neighborhood around
x. Finally, let L(f, g,Πx) measure the deviance of g from f
in the neighborhood defined by x. The goal is to minimize
the approximation loss L(f, g,Πx) and to keep the model
complexity Ω(g) as low as possible so that the explanation
is locally faithful and interpretable, that is:

ε(x) = arg min
g∈G

L(f, g, πx) + Ω(g). (1)

In the framework adopted by [4], the candidate explanation
model g is chosen from several models such as a sparse linear
regression and a decision tree. Neighbors z′ ∈ Z are sampled
around x′ by choosing nonzero elements of x′ uniformly at
random. The loss function L is the weighted mean square
error loss, where the weight is a smoothing kernel defined by
Πx(x′, z′).

IV. THE PROPOSED METHOD

As a model-agnostic approach, we treat a target machine
learning model as a black box and derive explanation through
local model approximation. We consider the clustered nature
of data and generate correlated data points when sampling
from the neighborhood of an instance, then apply Linear
Mixed Model to the sampled data for a more faithful approx-
imation of the target model’s local decision boundary.

A. Neighborhood Exploration for Clusters
Clustered data can be regarded as hierarchical or multilevel

data. In the example of recommender systems, the data usually



contain two levels, where users form the first level and movies
rated by the same user form the second level. Observations
such as movie ratings from the same user are correlated. Sim-
ilarly, patients’ ICU records of different admissions (second
level) are nested within the same patient (first level).

Formally, let i be the first-level index (e.g., user-ID, patient-
ID) and j be the second-level index (e.g., jth movie, jth

admission). Let xij be a p-dimensional feature vector for the
jth observation from group i. For example, features include
user age, user gender, and movie genre for the jth movie of
user i. The outcome variable yij is the corresponding response
of the jth observation in group i, e.g., user i’s rating for movie
j and patient i’s ICU stays for the jth admission.

To better learn the local behavior of a black-box model for
clustered data, we should consider sampling the local data
in a similar clustered structure. That is, instead of simply
perturbing original data by randomly selecting some features
and masking their values as in [4], we should create clustered
data similar to the training data. Specifically, for an instance
with feature vector xij and response yij to explain, we first
randomly perturb the features related to subject i and create a
set of m virtual subjects (e.g., user ID for MovieLens data and
patient ID for MIMIC-III data) as the first level of the local
data. Next within each virtual subject i, following the approach
similar to [4], we randomly mask out other non-zero features
while keeping the subject-related features the same and repeat
this process for ni times, to get the second level of the local
data. We can change the number of groups m or the group
size ni adapting to different datasets.

Formally, the local samples around neighborhood of xij are
denoted as a set Z = {zij ∈ Rp}, in which there are i =
1, . . . ,m subjects (e.g., users) and j = 1, . . . , ni observations
nested within each subject. There are totally N =

∑m
i=1 ni

perturbed observations in the neighbor of the original data
xij. For each observation, we get the outcome of perturbed
data yij through the model to explain, i.e., f(zij). Our goal
is to fit this local data {zij, yij} ∈ Z,Y to a simple LMM
with a random effect on subject ID and fixed effects on other
features.

B. Linear Mixed Model (LMM)

Compared with ordinary linear regression, LMM adds a
random effect component to capture the correlations among
the subjects within clusters. For example, an ordinary linear
regression that models the relationship between two variables
assumes that the intercept and slope of the regression line are
fixed for the whole population. In contrast, LMM model as-
sumes that the intercepts and/or the slopes of different clusters
may vary randomly depending on groups (e.g., subject-ID) in
addition to the fixed effects (the intercept and slope coefficients
returned by ordinary linear regression).

Take movie recommendation domain as an example, each
individual user (depending on age and gender) may have
his/her own patterns in rating movies of certain genres, say,
"romance", deviating from the whole population mean in
rating movies of this type. Young female users tend to give

higher ratings to romance movies whereas young male users
may rate in opposite way. This could be better handled in
LMM by putting features "age", "gender" and movie "genres"
as random effect variables.

Formally, a linear mixed model that augments the linear
predictor with random effects for each subject i is:

yij = zij
>β + cij

>γi + εij , (2)

where zij ∈ Rp is the feature vector of the jth member of
subject i, and β ∈ Rp is the fixed-effect coefficient vector
shared by the whole population. The vector cij ∈ Rq , a sub-
vector extracted from zij with q ≤ p, is the feature vector
of the jth member of subject i for q random effects such
as age and gender. The vector γi ∈ Rq is the random effect
variables/coefficients shared within each subject i, which is
used to model the subject’s deviation from the fixed effects.
Finally, εij is the residual that is not explained by the model.
Both γi and εij are assumed to follow a normal distribution
with zero mean. For model simplicity, we assume a random
intercept for each subject i to account for deviation of subject
mean to the population mean. In such a case, γi is a one-
dimensional random effect variable and cij becomes a constant
(i.e., q = 1 and cij = 1).

Usually, the ni observations of subject i are stacked together
and Equation (2) is rewritten in matrix notation as:

Yi = Ziβ + Ciγi + εi, i = 1, · · · ,m (3)

γi ∼ N (0, D), D ∈ Rq×q (4)

εi ∼ N (0,Σi), Σi ∈ Rni×ni (5)

where Yi = [yi1, . . . , yini
]> ∈ Rni is the response vector for

subject i, matrix Zi = [zi1
>, . . . , zini

>]> of size ni × p is
the data (feature) matrix of fixed effects for subject i, and
matrix Ci = [ci1

>, . . . , cini
>]> of size ni × q is the data

(feature) matrix of random effects for subject i. In addition,
γi is assumed to follow a normal distribution with zero mean
and covariance D. The residual term εi is assumed to follow
a normal distribution with zero mean and covariance Σi.

Finally, we concatenate the observations of all subjects
and rewrite Equation (3) in matrix notation. Let Y =
[Y >1 , . . . , Y

>
m ]> ∈ RN be the outcome vector for all ob-

servations of all subjects, where N =
∑m

1 ni. Let Z =
[Z1
>, . . . ,Zm

>]> ∈ RN×p be the matrix of the predictor
variables; Matrix C of size N × (m× q) is a block diagonal
matrix that concatenates each Ci along the block diagonal.

The matrix notation of the linear mixed model is:

Y = Zβ + Cγ + ε, (6)

where γ is the concatenation of the random effect variables
γ = [γ1, . . . , γm]> with size m × q, and ε = [ε1, . . . εm]> ∈
RN is the residual term. Moreover, let Λ = diag(D) of size
(m×q)×(m×q) denote the corresponding covariance matrix
for γ and W = diag(Σi) ∈ RN×N be the corresponding
covariance matrix for ε.



Algorithm 1 Algorithm for calculating explain features by
LMM for any model
Input: All the training instances Otrain; testing instances

Otest of size T ; budget K
Output: a set of explain features
begin

Train target model f(x) using Otrain
if f(x) = ‘linear’ then

get a list F of size K important features
end
for xt ∈ Otest do

1. generate local perturbed data Z
2. feed local perturbed data Z to target model f(x),
to get predictions as vector Y
3. train LMM with input= Z and output= Y to
obtain a list E of K important features
4. re-fit a debiased LMM model with only K features
in list E, and get the prediction g(xt) for xt
5. get the prediction f(xt) for xt by target model
f(x)
6. compute the absolute difference dt = ‖f(xt) −
g(xt)‖
if f(x) = ‘linear’ then

calculate the recall, precision, and F measure of
list E to list F

end
end
Output list E, average prediction discrepancy (

∑
t dt)/T

if f(x) = ‘linear’ then
Output list E, average prediction discrepancy
(
∑
t dt)/T , average recall, precision, and F measure

end
end

C. Estimation

Parameter estimation of LMM typically involves maximum
joint likelihood of Y and γ as in the following equation:

max
β,γ,W,Λ

logf(Y, γ) = max
β,γ,W,Λ

logf(Y|γ) · f(γ)

= max
β,γ,W,Λ

[−1

2
(Y−Zβ−Cγ)

>
W−1(Y−Zβ−Cγ)−γ>Λ−1γ].

(7)

By setting the partial derivatives of log-likelihood function
with respect to β and γ to be 0, we can get the MLE estimators
if the covariance parameters W and Λ are known. The matrix
notation is given in Equation (8):

(
Z

′
W−1Z Z

′
W−1γ

γ
′
W−1Z γ

′
W−1γ + Λ−1

)(
β̂
γ̂

)
=

(
Z

′
W−1Y

γW−1Y

)
.

(8)
However, Equation (8) cannot be solved directly because the

covariance matrices are usually unknown. We adopt restricted
maximum likelihood (REML) estimation to obtain covariance

matrices. Suppose the covariance matrices are only known up
to a parameter θ. That is W = W(θ) and Λ = Λ(θ). Denote δ
as the effect coefficients δ = (β, γ). Based on [8] and the note
from Kneib1, the algorithm simultaneously estimates δ and θ
by first initializing values for δ̂ = δ̂(0) and θ̂ = θ̂(0) and then
updating the value δ̂(k+1) = (β̂(k+1), γ̂(k+1)) through solving
linear equations in Equation (8) iteratively. In each step, Y
depends on δ(k) and θ(k) and (βk+1, γk+1) is computed.

In addition, the constraint ‖β‖0 ≤ l can be added into
Equation (7) so that β will not have more than l non-
zeros, which is necessary for model regularization as well as
controlling the explanation model complexity. Specifically, we
can use L1 regularization for β. The detail of the estimation
procedure is provide in [8].

D. Algorithm

Explanation System We introduce the algorithm of the
whole explanation system. We first train a target predictor
f(x) (e.g., a linear model or a neural network) with 80% of
the pre-processed data (the detail will be discussed in Section
V-A). If the model is a linear regression model, which is
self-explainable, we get a set of K (e.g., K = 10) gold
features that are considered important by the target model.
Then we test the explanation performance on instances from
the rest 20% data. For each test instance, we sample a set of
N (e.g., N = 10, 000) perturbed data of clustered structure
from the same feature space (the detail was discussed in
Section IV-A). We also get the predictions of testing samples
through target model f . Next we fit this local perturbed
dataset to a local linear mixed model. We will get a set of
K explanation features that are considered important by the
explanation model g. With these selected features, we refit
LMM model and get the predictions of testing samples by
g. We can evaluate the explanation using metrics such as
fidelity and exactness as defined in Section V-D. The detailed
algorithm is shown in Algorithm 1.

V. EXPERIMENTS AND RESULTS

We apply LMM to explain two types of models including
linear regression and deep neural networks on two applica-
tions. The first application is to predict movie ratings using
MovieLens 10M datasets and the second applications is to
predict patients’ ICU stay length using MIMIC-III dataset.

A. Dataset

The first one is MovieLens 10M dataset2, which contains
10,000,054 ratings of 10,681 movies by 71,567 users with
95,580 movie and user tags. Each user has rated at least
20 movies. To reduce data sparsity, we first select 100 most
commonly used tags by users and 100 most common tags
associated with movies. After that, we get a subset of data,
where each user or movie has at least one tag. The final dataset
for our experiment contains 345,608 ratings by 1,006 users

1http://www.ugoe.de/de/document/download/
c7cf1279ea23ebacd5084afcd5e9cdde-en.ps/remlestimation.ps

2http://files.grouplens.org/datasets/movielens/ml-10m-README.html



for 5,193 movies. The feature for each user-movie pair (i,j)
contains the tags of user i, the tags associated with movie j,
the ratings of user i for all other movies except j, and the
ratings of movie j from all other users except i. For example,
if a user has a tag, the feature value is the frequency of this
tag being used; otherwise, the feature value is 0. The output
variable is the rating of movie j by user i. Our data now
include a sparse feature matrix of size (345,608, 1,209) and
an outcome vector of all ratings. Then we split this dataset
with 80% as training set and 20% as testing set.

The second dataset is collected from MIMIC-III v1.4 clin-
ical database3, which contains records of patients who stayed
within an intensive care units at a medical center. This is a
de-identified public dataset for research purposes. We have
completed the required training course on data privacy and
security and obtained access of the database. In this dataset,
one patient has multiple records of being admitted to a hospital
(the same hospital at different times or different hospitals).
Each admission has a record described by a set of ICD-9
codes (alpha-numeric codes to classify diseases and various
signs, symptoms, etc.) assigned to the patient during that
particular admission, which forms the independent variables,
and the length of stay in ICU (in number of days) which is the
outcome variable. We find that ICU stay time is right skewed
and therefore use a logarithmic transformation on the output.
We select 1,000 patients with most recorded diagnosis ICD-9
codes. The final dataset contains in total 4,875 admissions of
1,000 patients and each admission is represented as a vector
of size 2,952 (i.e., the number of ICD-9 codes). We split this
dataset into 80% training and 20% testing sets, and test 1,000
random selected testing samples in the experiment.

B. Types of Models to Explain

For both datasets, we first use a linear regression model
with LASSO regularization as the target predictor.

The second target predictor is a deep neural network,
which is a black-box model for which we want to provide
explanations. Since our goal is not to propose advanced deep
models, we train a relatively simple deep model to compare
properties of explanations. Specifically, the model has one
embedding layer and one dense layer, each with 64 hidden
units, and an output layer that returns a single continuous
value, i.e., the predicted rating or predicted ICU stay. The
model is implemented in Keras and Tensor-flow.

C. Baseline Explanation Models

We compare the performance of four explanation models:
LMM (ours), LIME, LEMNA, Greedy and Random. LIME
[4] is a state-of-the-art black-box method and has been used to
explain image classifiers and NLP applications. We implement
the method using the Python code published by its authors
[4]. For a fair comparison, we also configure LIME with
N = 10, 000 artificial samples generated the same way as
that of LMM, only ignoring the subject IDs. Greedy method

3https://mimic.physionet.org/gettingstarted/access/

greedily removes features that contribute the most to the
predicted values until the maximum of K features is reached.
LEMNA [5] fits weighted multiple linear models on local data
and using the features returned by the "best" linear model
as the explanation. We implement LEMNA using R package
"flexmix". The algorithm fits a mixture of regression models
using the EM algorithm, and then selects important features
from the most "possible" components (i.e., linear model) as
suggested in [5]. In our experiments, it is computationally
expensive to train a mixture model on the original features.
Therefore, we use Greedy method to pre-select K+5 features
and then train LEMNA on the reduced features to further
select top K features. The Random procedure randomly picks
K features as an explanation. We set budget K to 5 and 10
for our experiments. We tweak parameters for all baselines to
achieve their best performance. Specifically, there are several
parameters, such as the number of groups m and number
of samples within one group ni for LMM model. In local
sampling, we set m = 25 and ni = 400 for MovieLens.

D. Evaluation Metrics

We used two metrics to evaluate and compare our ex-
planation models to the baseline models. They are fidelity
and exactness. A good explanation should achieve both high
faithfulness and high exactness.

Fidelity: It measures how much an explanation is faithful
to the target prediction model with respect to a test set. We
adopt the metrics similar to the one in the LIME paper [4].
The "gold features" (denoted as a set F ) identified by a self-
explainable model such as linear regression represents the
most important features for global decisions. The "explanatory
features" considered as important for local decision boundary
identified by explanation model for each test instance, denoted
as a set E, are compared with F using similarity measures.
In particular, we set the same budget (K = 5 and K = 10)
for the maximum number of features that a target model or
an explanation model can select.

To measure the similarity between two feature sets, we use:

• recall = |F∩E|
|F | , the fraction of F recovered by E;

• precision = |F∩E|
|E| , the fraction of E relevant to F ;

• F − score = 2 · precision·recallprecision+recall , the harmonic mean of
precision and recall.

We compute recall, precision, and F-score for each instance in
the test set but only report the average F-score for the whole
test set.

Exactness: It measures how much difference between the
target model and explanation model is in terms of prediction
accuracy given a test set. This metric calculates the prediction
from the target model of each instance in the test set, and
compares it with the prediction from the explanation model.
It can be tested on any target model such as sparse linear
model and deep neural networks. Specifically, we calculate
the prediction of each instance xt in test set T from both
the target model f(xt) and explanation model g(xt), and then



TABLE I: Fidelity (F-score) to Linear Target Model.

Data K Explanation Model
LMM LIME LEMNA Greedy Random

Movie 5 0.6554 0.3433 0.376 0.5567 0.3126
10 0.6263 0.446 0.406 0.5777 0.1793

MIMIC 5 0.5385 0.3659 0.3669 0.4603 0.3575
10 0.3947 0.2656 0.268 0.3337 0.2648

calculate the average of their absolute difference over all test
instances by

∑
t |f(xt)−g(xt)|

|T | .

E. Results on Fidelity and Exactness

Fidelity Evaluation: We first measure the faithfulness of
explanations on target models that are by themselves inter-
pretable (sparse linear regression).

From Table I we can observe that LMM has the highest
F-measure for both budgets for both datasets. Greedy has
the second highest value. LIME and LEMNA are however,
not performing well for those datasets. Random is the worst.
This may be because those baseline models assume that all
observations are independent, which is inefficient for handling
clustered data. We can also observe that the performance of
most models for MIMIC-III data is lower due to the data
sparsity.

LMM achieves a higher F-measure on smaller budget set
(5 v.s. 10), which suggests that LMM provides explanations
good enough with a small size of features. A short explanation
is beneficial to human because it is much easier for human
to process small-size information. We can further reduce the
budget to get a precision close to 1.0, but we do not include
the results here because further reduction of budgets leads to
a poor performance of the target model.

Exactness Evaluation: As discussed in section V-D, an
exact explanation should have small discrepancy in the pre-
dicted value with the target model. Since Greedy and Random
methods do not need the explanation model to provide predic-
tions, we do not compare the exactness with these two baseline
methods.

From Table II we can observe that, the predicted value by
LMM is much closer to the sparse linear model in both datasets
and budget settings. For example, with sparse linear model
as the target predictor and budget setting of 5, the average
of difference in the prediction on movie ratings is 0.005 for
LMM, which is 35% of the number for LIME (0.014) and 11%
of that for LEMNA (0.0497). With deep model as the target
predictor, LMM’s prediction is closer to the target model than
LIME in all settings except for MovieLens dataset with budget
10. LIME outperforms LMM slightly by 0.0023. LEMNA’s
prediction is not as close as LMM and LIME to the target
model in all settings. Note that we did a log transform to
the patients’ ICU stay times. Therefore, a number of 3.165e-5
is 1 day as an example. In addition, our LMM model with 5
features performs worse than the one with 10 features in terms
of exactness.

TABLE II: Exactness of Explanation Models to Target Models.

Target Model Data K Explanation Model
LMM LIME LEMNA

Sparse Linear
Movie 5 0.005358 0.01433 0.0497

10 0.005328 0.02388 0.1896

MIMIC 5 3.165e-5 0.04116 0.1896
10 5.519e-16 0.04896 0.2010

Deep
Movie 5 0.03454 0.03635 0.0871

10 0.03720 0.03489 0.0835

MIMIC 5 0.1020 0.1372 0.2700
10 0.04728 0.1309 0.2656

VI. CONCLUSIONS

In this paper, we propose a novel explanation method to
explain the predictions of any model on clustered data. Our
work is, to the best of our knowledge, the first one that uses
a model-agnostic approach to explain any black-box machine
learning model on clustered data. Specifically, we use a linear
mixed model to learn the local behavior of any black-box
model on clustered data application, which improves model
fidelity. We calculate the fidelity and exactness of our method
to target models on two applications with two budget settings.
Experiment results show that our method outperforms other
baseline methods.
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